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Electromagnetic barrier penetration : wave packets and signals 
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Abstract The time delay connected with the transmission of an electromagnetic wave across 
a barrier is investigated. The stationary phase method implies that the effective group 
velocity of the transmitted wave, inside the barrier, can exceed the velocity of light in vacuo. 
Consequently the transmission ofa signal with a sharp front is studied todetermine the upper 
bound for the signal velocity. The approximation employed does not yield a conclusive 
answer in general, while for the special case of critical incidence the proof is given that the 
effective signal velocity does not exceed the velocity of light in vacuo. 

1. Introduction 

The interest in the possibility of faster-than-light propagation has recently been revived 
owing to speculations about tachyons. De Beauregard and Ricard (1970), de Beauregard 
er al(1971) and de Beauregard (1973) conjectured the tachyonic properties of the evan- 
escent electromagnetic wave. 

In dispersive media with refractive index less than unity the phase velocity of an 
electromagnetic wave exceeds c, the velocity of light in uucuo. Even the group velocity 
can exceed c if the frequencies of the waves in a group are centred in the vicinity of one 
of the eigenfrequencies of the medium, ie in the region of anomalous dispersion. How- 
ever, a detailed analysis has shown that the velocity of a signal imposed on the wave 
cannot exceed c (Brillouin 1960). 

These peculiarities of wave propagation are caused by the internal properties of 
the medium. Analogous phenomena can nevertheless arise, even in uucuo. For example, 
in empty waveguides phase velocities exceed c owing to boundary conditions. An 
even more striking example is offered by the electromagnetic barrier, ie an optically 
less dense layer in a medium, if the angle of incidence is greater than the critical angle 
of total reflection. 

The evanescent wave in an electromagnetic barrier was investigated in connection 
with the Goos-Hanchen shift of the transmitted and reflected beam (Strnad and Kodre 
1974). So far, to our knowledge, the signal transmission time for an electromagnetic 
barrier has not been analysed in detail?. 

In the first part of the paper we demonstrate that the effective group velocity for 
barrier transmission can exceed c. Consequently an investigation of signal velocity is 

The delay time at total reflection on a semi-infinite medium was studied by Agudin (1968). In an earlier 
paper we investigated the delay time of the beam reflected and transmitted by a barrier using a minimum- 
marked-wave method and verified the results in the scope of scattering theory. These results agree with the 
results in the first part of the present paper. 
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given. Conclusive results can be obtained for the vicinity of the critical angle, which is 
the most interesting region from the experimental as well as from the theoretical point 
of view. 

2. Wave packets 

The boundary planes of a thin layer of a medium with index of refraction n ,  are placed 
at z = 0 and z = Z. The layer is surrounded by a medium with index of refraction 
n > n, . A beam of electromagnetic waves impinges on the boundary z = 0 in the plane 
of incidence xz with the angle of incidence 8. The wave vector of the incident and trans- 
mitted wave is then (nw/c)(sin 0,0, cos 0). Two basic polarization states will be con- 
sidered : the transverse electric (E) and the transverse magnetic (TM) polarization. The 
transverse field in the incident wave packet can be constructed as 

A = [[ F ( o ,  U’, &e l )  exp(i@(o’, e’)) do’  de’. 

For our purposes the spectral density F ( o ,  U’, & e l )  should have nonzero values in a 
small region around o and 8. The phase can be written in the form 

(2.2) 

In the approximation of the stationary phase method the group velocity of the 
packet is obtained as the velocity of propagation of the maximum of the wave packet. 
The extrema1 value of the integral (2.1) is, in the scope of this approximation, obtained 
at the stationary point of the rapidly oscillating term. This point is determined by the 
conditions 

aqo, eyaw = o aqo, eyae = 0. (2.3) 

O(w, 8) = (no/c)(x sin 0 - z cos 0) - ot .  

For the incident wave packet these conditions givet 

x = ct sin 0/n z = ct cos 8/n, 

ie the maximum of the incident wave packet reaches the origin x = 0, z = 0 at the time 
t = 0. Owing to the small width of the spectral density mean values o and 8 have been 
inserted for the variables w‘ and el. 

In the transmitted wave packet each constituent plane wave has to be ascribed its 
proper value of the transmission coefficient, 

(2.4) 

Here -6 = - 2  tan-’(nn,z/a2 cos 0) is the phase shift at total reflection on a semi- 
infinite medium and a = n,cZ/c with z = (n2  sin20/n: - l)”*. The introduction of 
parameter a unifies the expressions for both polarization states: a = n for TE and 
a = n1 for TM. Thus the transmitted wave packet can be written in the form 

T(w, 0) = sin 6 exp( - inZo cos O/c)/sin(6 - iaw). 

A ,  = [[ F ( o ,  U’, &el)(  T(o’, 8‘)l exp(i@,.(o’, el)) do’  de’ 

t Thereby the frequency dependence of n is neglected. This is done also in the derivations to fol:ow since the 
dispersion of n and n, is not of interest here and does not introduce any essential effect. 
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with the phase 

@&o, 8) = (nw/c) [x sin 8 - ( z  - Z) cos e] - wt + tan- '(tanh aw/tan 6 ) .  (2.6) 

Conditions (2.3) imply in this case that 

x = X+c(t-T)sinO/n z = Z+c(t--)cosO/n, 

where 
sin 6[(n2 - n:) sin28 sinh a o  cosh a o  - n:aw cos S cos28] 

on:r2(sinh2aw + sin26) cos28 
r =  ( 2 . 7 ~ )  

is the time of appearance of the maximum in the transmitted wave packet at the boundary 
plane z = 2 and 

(2.7b) 
c sin S sin 8[(n2 - n:) sinh ao cosh a o -  n2ao cos 6 cos28] 

onn:c2(sinh2ao +sinzS) cos28 
X =  

is the corresponding longitudinal shift. 
A similar procedure, with the transmission coefficient T of (2.4) replaced by the 

reflection coefficient R = sin iaw/sin(iaw - 6), leads to the same values of T and X for 
the reflected wave packet. 

The apparent distance 'travelled' by the maximum of the transmitted wave packet 
inside the barrier is (X2+Z2)1/2. Light in uucuo would pass this distance in a time 
(X2+Z2)112/c. Therefore, for 5 < (X2+Zz)'1z/c the propagation of the maximum of 
the transmitted wave packet across the barrier can be considered as superluminal, the 
effective group velocity 

(2.8) 
being greater than c. From the relation e,(@ = c the threshold thickness of the barrier, 
Zmin(8), can be determined at which the transmission becomes superluminal. In the 
limit of critical incidence, 8 -, 8, = sin-'(n,/n), for a vacuum gap in glass (nl = 1, 
n = 1.5) we obtain Zmin(oc) = 0.221 for TE polarization, A being the vacuum wavelength. 
Evidently, very narrow gaps are already 'superluminal' at critical incidence. Numerical 
calculations show that for 8 > 8, the threshold thickness Zmi,(8) > Zmin(Oc). 

The maximum of the reflected wave packet does not propagate superluminally, the 
maximal value of the ratio X / r ,  ie ( X / T ) ~ + ~  = c/n sin 8, not exceeding e. 

q e )  = (x2 + ~ 2 ) 1 / 2 / ~  

3. Signals 

The method of stationary phase as employed in the preceding section is only a first 
step in general techniques based on Fourier decomposition of waveforms (Brillouin 
1960, Fox et a /  1970). The explicit analytic evaluation of transmitted wave-packet 
integrals (2.5) is seriously complicated by the presence of the transmission coefficient 
which is an involved function of variables o and 8, and can be implemented only for 
most simple waveforms. On the other hand an absolute upper bound for the signal 
velocity can be defined by the use of waveforms with a sharp front. So we choose a 
signal of the form of a plane wave with a sharp front 

A = e x d - i d )  t' > 0 x \  

A = O  (3.1) 
t' < 0 
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where a new variable has been introduced : r’ = t - ( n / c ) ( x  sin 0 + z cos e). The Fourier 
transform will be defined as 

m 

d ( p )  = (277)- A(t’) exp(ipt’) dt’ = i(277)- l i 2 ( p -  w)-  ’. (3.2) J- 00 

rm 
The constituent plane waves differ in frequency but propagate all in the same direction. 
This exclusion of the variable 8 saves a great deal of mathematical complexity but leads 
to some difficulties which will be discussed later. 

The incident signal can be reconstructed as 

A(t’) = (277)- l i Z  d ( p )  exp(- ipt’) dp 

and the transmitted signal (for z > 2) as 

A,(t’) = (277)- l i 2  d ( p ) T ( p ,  e) exp( - ipt’) dp J-ma 
6. 

( p  - 0)- ‘[sin 6/sin(6 - iap)] exp( - ipt’ - inZp cos O/c) dp. (3.3) 

The integration is carried out by closing the contour of integration in the complex plane. 
The integrand has simple poles at p ,  = w (originating from d ( p ) )  and p ,  = i(mn - 6)/a, 
m = 0, f 1, +2, .  . . (originating from T(p,  8)). The contour is closed by an infinite 
semicircle in the upper half-plane for t” = t’ - nZ cos e/c < 0 and in the lower half-plane 
for t” > 0. In the first case poles at  p ,  with m = 1,2, .  . . are enclosed and in the second 
case poles at pm with m = 0, - 1, - 2,. . . and the pole at p , .  Though the latter lies on the 
real axis, it can be shown to belong to the lower half-plane by the well-known device 
of an additional exponential factor exp( - qt’)  with a positive constant q -, 0 in the 
incident wave (3.1) to ensure its regularity for t’ + CO. 

1- a = i(2n)- ’ 

The sums of pole residues give 

a 
A ,  = - sin 6 ( - ~ ) ~ ( m n  - 6 + iaw)- exp[(mn - S)t”/a] t” < 0 

1 

A ,  = T(w, 0 )  exp( - iwt’) 
0 

+ sin 6 2 (- l)“‘(mx - 6 + iaw)- exp[(msc - 6)t”/a] t“ > 0. (3.44 

After a somewhat lengthy procedure the above expressions can be brought to a common 
form 

A ,  = a -  sin S exp( - i d ’ )  1- exp(iws - s6/a) [ 1 + exp( - ns/a)]- ds. (3.4b) 

The same form can more easily be obtained from equation (3.3) by use of the convolution 
theorem 

-m 

f ” 

m 

A ,  = (277)- ‘A(t”)* ~ ( t ” ,  e), 
where F(t”, 6 )  represents the inverse transform of the transmission coefficient. 
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4. Discussion 

Due to the presence of poles of ddp)  in the upper half-plane the transmitted waveform 
does not in general exhibit a sharp front and cannot, according to Fox et a1 (1970), be 
considered a proper signal. Indeed, in the limit oft" + - 00 we obtain 

AT z sin 6(n - 6 + iaw)- exp[(n - 6)t"/a], 

ie a small non-oscillating field preceding the signal. This field is the consequence of the 
simple form of the incident signal and can qualitatively be explained as follows: the 
front of the incident signal penetrates the barrier at all times, the point of intersection 
travelling along the boundary plane at z = 0 with the velocity c/n sin 6. The disturbance 
inside the barrier travels along it with the local velocity c / n l .  For angles of incidence 
greater than e,, the disturbance from earlier times thus always precedes the advent of 
the wave front to the boundary plane at z = 2. Consequently it generates a field in the 
medium beyond the barrier before the proper transmitted signal appears, and smears 
out its front. However, at the critical angle itself both velocities are equal and a sharp 
front of the transmitted signal can nevertheless be expected. Indeed, Fox's criterion is 
fulfilled in this case as all the poles at pm with m # 0 recede to infinity with vanishing 
residues. The remaining poles at p ,  and po  give rise to the signal 

( A T ) e = e c  = p[exp( -iot")-exp(-pt")]/(b-iw) 

(AT)o=ec = 0 

t" > 0 

t" c 0 

with p = (6/a)e=ec = 2nc/a2Z cos 0,. 
Evidently the signal is distorted. Let us examine the quantity A*A,  which is pro- 

portional to the energy flux in the signal and represents a suitable real envelope of the 
signal. The step function of the incident signal is distorted to (figure 1) 

(ATA,)e,oc = b2[1 - 2  COS ut" exp(-~bt")+exp(-2bt")l/(w2+82), 

A *A ' t 
A *A 

TU I -  2 h  

Figure 1. The time dependence of (A:A,.)8=eo, proportional to the energy flux in the trans- 
mitted signal at critical incidence. 
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ie to a function which grows from zero at t” = 0 proportionally to f 2  and approaches 
asymptotically the expected value T*T = /3’/(02+fi2) at t” + 00. This distortion is the 
consequence of the dispersion property of the transmission coefficient. 

In spite of a sharp front the time of passage of the signal across the barrier cannot 
be determined by itself because of the translational invariance of the solution. That is, 
there is no indication as to which point of the boundary plane z = 2 represents the 
exit point of the ray, incident at x = 0, z = 0. However, borrowing the result for the 
shift X from $2,  an effective signal velocity of barrier penetration can be defined 
analogously to the effective group velocity (2.8) as 

(4.1) c, = ( X 2  + Z2)l’2/ltff(X, 2)l. 
For critical incidence X + 00 and It”(X, Z)l = n , X / c  and consequently 

c,(8,) = c/nl < c, 
ie the signal velocity equals the phase velocity of light inside the barrier: the signal 
does not propagate superluminally. 

There is little to be said at present about the propagation of signals for angles of 
incidence greater than the critical angle. The preceding non-oscillatory field could be 
avoided by use of an incident wave with a sharp side edge (eg Ricard 1973) as well as 
the sharp front employed here. The fact that the barrier at angles of incidence 8 > 8, 
is less superluminal with respect to the effective group velocity than at critical incidence 
indicates that the present proof for 6, should successfully be extended there. 
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